Association of Applied Biologists
AAB - President
Plant Physiology and Crop Improvement

The Group is concerned with how environmental and genetic factors affect the physiology of crops and thus their yield and quality.

In recent years, knowledge of crop growth has expanded rapidly using molecular techniques. The Group provides a link between these exciting areas and traditional crop physiology and considers their application to plant breeding for particular purposes. 

 

In recent years, the Group has been responsible for conferences on topics as diverse as the links between genotype and phenotype, optimisation of water-use by plants in the Mediterranean and the role of crop quality in sustainable livestock production.

 

Conferences are often held in conjunction with other Specialist Groups and other organisations.

Convenor
Guy Barker

Guy is Director of the Genomics Resource Centre in the School of Life Sciences, University of Warwick. His academic interests include: Comparative genomics and genome organisation including exploring the genes and mechanisms underlying quality and other traits related to health and wellbeing. His other research interests include developing a novel approach for the recovery of bio-energy from ligno-cellulolytic waste, exploring the genes and mechanisms underlying fatty acid quality and utilising diversity within the gene pool to understand gene expression and regulation of biodiversity. He is involved in the ongoing international Brassica Genome Sequencing efforts funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and has further funding in the area of crop science and diet and health also funded by the BBSRC.

Guy is actively involved in science communication and has received awards from both the Department for Environment, Food and Rural Agriculture (Defra) and BBSRC for his public engagement work. He is a Member of the Academic advisory panel of the Chemistry Innovation Knowledge Transfer Network (CIKTN), Contributor to the Industrial Biotechnology, Innovation and Growth Team (IB-IGT) report and Sciencewise project looking at Public perceptions to Industrial Biotechnology which is continuing through further engagement with the UK department for Business, Innovation and Skills (BIS) and Forum for the Future.

Guy recently participated in the Nuffield Council on Bioethics working party review on new approaches to biofuels.

He closely collaborates with Chemistry, Engineering and WMG in developing alternative products from plant based origins.

Group Members
Simon Griffiths
Project Leader, Crop Genetics, John Innes Centre.
We study height and flowering time in bread wheat, taking the two characteristics together, because the developmental processes behind them are entwined, exerting a complex influence on the way a wheat crop fits lifecycle to environment while allocating captured resources to one organ or another. What genes control this balancing act? To answer this question, specialised techniques are used pinpoint genes within the large and complex genome of bread wheat. The specific DNA sequence changes that confer beneficial effects are identified and tools developed that allow breeders to use this new knowledge for the production of elite wheat varieties. Extensive use is made of Landraces to capture genetic variation that is lost to modern bread wheat but through work carried out here can now be used. The genes identified in this work operate within molecular networks. We see how they operate within these networks to provide new ideas for the application of the genetic architecture of wheat to design new varieties of this crop fit for the challenge of sustainable food security.
Nigel Halford

Professor Nigel Halford is a Research Leader at Rothamsted Research, the UK’s oldest crop and agricultural research institute.  He obtained his first degree from the University of Liverpool in 1983 and a Masters degree from University College London in 1984.  He studied for his PhD while at Rothamsted in the 1980s, then spent 11 years at Long Ashton Research Station near Bristol before returning to Rothamsted in 2002.  He is the author of more than 100 scientific papers and has written or edited books on ‘Genetically Modified Crops’, ‘Plant Biotechnology’ and ‘Energy Crops’.  His work concerns the regulation of plant metabolism, how it is affected by environmental stresses such as heat and drought and how it can be manipulated to improve crop yield and food safety.  He is a Special Professor at the University of Nottingham and Visiting Professor at the Shanghai Academy of Agricultural Sciences.  Professor Halford is also a member of the Advisory Committee for Animal Feedingstuffs (ACAF), one of the three committees that advise the UK government on plant biotechnology.  He lives in Bedfordshire with his wife and two children, and is an enthusiastic swimming coach and long distance swimmer. 

Jim Monaghan

Jim Monaghan has worked in crop science for over 20 years. Following a Biology degree at UCNW Bangor, Jim researched aspects of crop production at Harper Adams University College and John Innes Centre (PhD), Newcastle University, HRI-Efford and HRI-Wellesbourne. Jim then had a look at the real world for three years at Marks and Spencer as Salads Technologist, where he had responsibility for food safety, pesticide residue minimisation, and compliance with codes of practice for all salad products and salad ingredients in minimally processed foods, before heading back to Harper Adams to develop teaching and research in the area of fresh produce production in 2005.  

 

Jim’s research at HAU is based in the Fresh Produce Research Centre and is focussed on fresh produce production, particularly leafy vegetables and covers three areas:

 

Identifying genetic traits that may lead to more sustainable crop production

 

Agronomic manipulation of post-harvest quality and nutritional content in crops     

 

Developing and implementing food safety systems in fresh produce

 

Erik Murchie

Photosynthesis : optimising nature's solar energy converter

I am studying the factors that regulate and limit photosynthesis in crop plants. I examine the fundamental processes in crop plants such as light harvesting, carbon assimilation and energy dissipation and identify targets and strategies for improvement of crops in optimal and suboptimal (stressful) environments.

The rate of leaf and canopy photosynthesis is becoming more important as a target for raising crop yields. We know this from studies that identify total biomass accumulation rate as a limiting factor (Murchie et al, 2009).

Molecular processes of harvesting and converting photosynthetically active radiation in plants operate with a very high efficiency. However the upscaling of these processes to plants, canopies and agroecosystems involves losses caused by metabolic and environmental factors and we measure this as a reduction in radiation - use efficiency (RUE).

Consider joining the AAB